AIM: 2-3 I will be able to EVALUATE algebraic expressions!

Name _____ Mrs. Ashley Date _____ Math 6 - Period __

Warm-up: Simplify the following numerical expressions.

CHAPS CHAPS

Let's Investigate: Identifying and writing equivalent expressions.

Inflation is the rise in prices that occurs over time. For example, you would have paid about \$7 in the year 2017 for something that cost only \$1 in the year 2000.

2000	2017	
\$1 - 7	= \$7	
\$2 · 7	= \$14	
\$3 · 7	\$21	
\$p · 7	\$p×7 —	> algebra
		0 1 1 1 1 1 1 1 1 1 1

A Variable is a letter or symbol that represents a quantity that can change. In the table above, p is the variable that represents the price in 2000.

a <u>CONSTANT</u> is a quantity that does NOT change. In the table above, the price of an item in 2017 is always 7 times the price in 2000. (A number) No variables

An <u>algebraic expression</u> contains one or more $\underline{\underline{VariableS}}$ and may contain operation symbols. $(+, -, \times, \div)$. In the table, $\underline{p \times 7}$ is an algebraic expression.

Examples:

Numeric Expression

(1011 101 10 2 11 2 1	
Algebraic Expression Variables	NOT an Algebraic Expression No Variables
150 + y	85 ÷ 5
35w + 2	10 + 3 × 5
2x + y	2 + 4 - 2
Make your own: $5y + x^2 3n + y$	Make your own: 33-9-4, 24:6
3+4	

A <u>COEFFICIENT</u> is the number in front of a variable. In the expression 3x, the 3 is the coefficient. If a variable does not have a number in front of it, the <u> →3</u>× coefficient is ${f 1}$.

When addition or subtraction separates an algebraic expression into parts, each part is called a TERM. (Example: 3x + 4; 3x is a term, 4 is a term)

KEY CONCEPT 1: Identify Terms, Coefficients, and Constants in algebraic expressions

6n² ⊕ 7n ⊝ 4

- a) How many terms are there? 3 List each term. 6^2 , 70, -4
- b) List the COEFFICIENTS: 6, 7
- c) List the CONSTANTS: ____

Now You Try!

- a) How many terms are there? $\frac{4}{4}$ List each term. $\frac{50^3}{3}$ $\frac{-20}{3}$ $\frac{8}{3}$ $\frac{50}{3}$
- b) List the COEFFICIENTS: 5, -2, 5
 c) List the CONSTANTS: 8

KEY CONCEPT 2: Evaluate Algebraic Expressions

To evaluate an algebraic expression, <u>SUDSFifute</u> the number for the variable and then find the value.

Mrs. Ashley's favorite mistake: Evaluate 2x when x = 3

23 or (2·3

2x means

a times x

Examples: Evaluate each expression below for the given variable.

1) Evaluate each expression when (x = 3) Show your work & substitutions!

Sum: 60

2) Evaluate each expression for the given variable. Show your work & substitutions!

a)
$$6n + n^2$$
, when $n = 5$
 $6 \cdot 5 + 5^2$
 $6 \cdot 5 + 25$
 $30 + 25$

b)
$$\frac{16}{g}$$
, when $g = 4$

$$\frac{16}{4} \rightarrow 16 = 4$$

3) Evaluate each expression when a = 3(b = 4), and(c = 6) Show work & substitutions!

c)
$$a^{3}-(b+c)$$

$$3^{3}-(4+6)$$

$$3^{3}-10$$

$$27-10$$

$$17$$

SUMMARY:

4) Evaluate each expression below when x = 7

Are your answers for #1 and 2 the same? Explain why or why not.

The answers are different because order of operations changes the order you do the steps. In problem A you must first subtract inside the parenthesis and in problem B you must first multiply.

A <u>VARIABLE</u> is a letter or symbol that represents a quantity that can change. Common variables are x, y, n, p.

A CONSTANT is a quantity that does NOT change. A number.

An <u>ALGEBRAIC EXPRESSION</u> contains one or more variables and may contain operation symbols. $(+, -, \times, \div)$.

$$2n + 1$$
; $x^2 + 2x + 4$; $3p$

A COEFFICIENT is the number in front of a variable.

In the expression 2y + 5, 2 is the coefficient, 5 is the constant.

When addition or subtraction separates an algebraic expression into parts, each part is called a $\overline{\text{TERM}}$. Example: 3x + 4; 3x is a term, 4 is a term.

To evaluate an algebraic expression, substitute the number for the variable and then find the value. (Example: Evaluate 3x when $x = 3 \rightarrow 3 \cdot 3 \rightarrow 9$)