AIM: 2-3 I will be able to EVALUATE algebraic expressions!
Name \qquad
Mrs. Ashley
Warm-up: Simplify the following numerical expressions.

$$
\begin{array}{cc}
G & \begin{array}{c}
\text { 1) } \\
E+7 \times 3-1 \\
E
\end{array} \\
\overrightarrow{M D} & 21-1 \\
\overrightarrow{A S} & 25-1 \\
24
\end{array}
$$

Let's Investigate: Identifying and writing equivalent expressions.
Inflation is the rise in prices that occurs over time. For example, you would have paid about $\$ 7$ in the year 2017 for something that cost only $\$ 1$ in the year 2000.

2000	2017
$\$ 1.7$	$=\$ 7$
$\$ 2.7$	$\$ 14$
$\$ 3.7$	$\$ 21$
$\$ p .7$	$\$ p \times 7 \rightarrow$ algebraic or $7 p$
expression	

2) $6(9+2)+7$
$\begin{aligned} \text { 3) } 35 \div 7 \times 5 & \xrightarrow{\text { E }} \\ 5: 5 & \xrightarrow{M D} \\ 25 & \end{aligned}$
Date \qquad
Math 6 - Period \qquad

$$
\begin{gathered}
6 \cdot 11+7 \\
66+7 \\
73
\end{gathered}
$$

$$
\begin{array}{r}
\text { or... } 6.9+6.2+7 \\
54+12+7 \\
73
\end{array}
$$

A \qquad is a letter or symbol that represents a quantity that can change. In the table above, p is the variable that represents the price in 2000.

A \qquad is a quantity that does NOT change. Inthe table above, the prise of item in 2017 is anvers 7 times the prise in 2000. ((A number) No variables
An algebraic expression contains one or more \qquad variables and may contain operation symbols. ($+,-, x, \div$). In the table, $p \times 7$ is an algebraic expression.
(no sign!)

Examples:
Numeric Expression

Algebraic Expression Variables	NOT an Algebraic Expression
$150+y$	$85 \div 5$
$35 w+2$	$10+3 \times 5$
$2 x+y$	$2+4-2$
Make your own: $5 y+x^{2}, 3 w+y$	Make your own: $33 \cdot 9-4,24 \div 6$
$3+y$	

A. COeFFicient is the number in front of a variable. In the expression $3 x$, the 3 is the coefficient. If a variable does not have a number in front of it, the coefficient is 1 .

$$
\longrightarrow 3 x \quad 1 y+8
$$

When addition or subtraction separates an algebraic expression into parts, each part is called a TERM. (Example: $3 x+4 ; 3 x$ is a term, 4 is a term)
$3 x, 4 \quad 3 x \oplus 4-2$ terms - $3 x \Theta 43 x,-4$
KEY CONCEPT 1: Identify Terms, Coefficients, and Constants in algebraic expressions
$6 n^{2} \oplus 7 n \oplus 4$
a) How many terms are there? \qquad 3 List each term. \qquad $6 n^{2}, 7 n,-4$
b) List the COEFFICIENTS: \qquad
c) List the CONSTANTS \qquad -4

Now You Try!
$5 n^{3} \odot 2 n \oplus 8 \oplus 5 n$
a) How many terms are there? 4 List each term. $5 n^{3},-2 n, 8,5 n$
b) List the COEFFICIENTS: $5,-2,5$
c) List the CONSTANTS: \qquad

To evaluate an algebraic expression, substirtute the number for the variable and then find the value.

Examples: Evaluate each expression below for the given variable.

2) Evaluate each expression for the given variable. Show your work \& substitutions!

3) Evaluate each expression when $a=3$ b = 4. and $c=6$ Show work \& substitutions!

4) Evaluate each expression below when $x=7$

Are your answers for \#1 and 2 the same? Explain why or why not.

The answers are different because order of operations changes the

 order you do the steps. In problem A you must first subtract inside the parenthesis and in problem B you must first multiply.
ITMA AWAT

A VARIABLE is a letter or symbol that represents a quantity that can change.
Common variables are x, y, n, p.

A CONSTANT is a quantity that does NOT change. A number.

An ALGEBRAIC EXPRESSION contains one or more variables and may contain operation symbols. ($+,-, X, \div$).

$$
2 n+1 ; \quad x^{2}+2 x+4 ; \quad 3 p
$$

A COEFFICIENT is the number in front of a variable.
In the expression $2 y+5,2$ is the coefficient, 5 is the constant.

When addition or subtraction separates an algebraic expression into parts, each part is called a TERM. Example: $3 x+4 ; 3 x$ is a term, 4 is a term.

To evaluate an algebraic expression, substitute the number for the variable and then find the value. (Example: Evaluate $3 x$ when $x=3 \rightarrow 3 \cdot 3 \rightarrow 9$)

