AIM: 6-2 How do we write and graph inequalities on a number line?
Name \qquad
Ms. Piccolo
Date \qquad
Math 6 - Period

Warm-up: Of the numbers 6,7, or 8 , which is a solution of the inequality below?

Let's Investigate: Graphing Inequalities

Inequalities can be graphed on a \qquad number line

Sometimes, it is impossible to show all of the values that make an inequality true.
There can be infinitely many solutions.
The number line helps you see which values make the inequality true.
OPEN CIRCLE: $\quad \bigcirc$ describes $>$ (Greater than)
\longleftarrow ○ describes <(Less than)

'less ink'
(does not include \#) $x<3 \quad x \neq 3$
CLOSED CIRCLE: \longrightarrow describes \geq (Greater than or equal to)
\longleftrightarrow describes \leq (Less than or equal to)

(Does include the \# $x \leq 3 ; x=3$)
*Note the direction in which the inequality sign is pointing!

KEY CONCEPT 1: Write an inequality that represents the graphs below. HINTS: The variable is always written on the LEFT side!

The inequality points in the direction of the arrow!
a)

 $0^{\text {Sing! }}$
b)

 Sing! ${ }_{2}$
c)

Sing

KEY CONCEPT 2: Graph each inequality on the number line.

Sing!
d) $\quad n \leq 1$

Closed
e) $x \geq-2$
*f) $\underbrace{\text { Open }}_{5>p}$ $p<5$
9) open
$y>-7$

Helpful Hints!

Open circle $\stackrel{\bigcirc \longrightarrow}{\longleftrightarrow}$ is $<,>$
Closed circle \longleftrightarrow is \leq, \geq
Variable is on the left side.
Shade to the end of \# line and include an arrow!

Inequality points in the
direction of the arrow!

Now You Try! Write an inequality that represents the graphs below.

Graph each inequality on the number line.

1) $x \leq 1$

2) $m>-2$

3) $x \leq 4$
4) $m>-6$

